在庫最適化の例題
mean = 100.
sigma = 10.
normal = norm(mean,sigma) #需要量
price = 100.   #販売価格
purchase = 70. #仕入れ値
demand = normal.rvs(100)
lostsales = 0.
salvage = 10. #バイトに半値で売るとき 50 :-) 
loyality = 0.5
Q = 100 #発注量
QLB = 50
QUB = 130

retail_profit, seven_profit = [], [] 
for Q in range(QLB,QUB):
    
    profit_retail, profit_seven, lostsales_cost, salvage_value = 0,0,0,0
    for d in list(demand):
        purchase_cost = purchase*Q
        profit = price*min(Q,d)
        net_margin = profit-purchase_cost  #粗利益(通常会計 -> 本社利益と小売店利益は同じ)
        profit_retail +=  (net_margin + salvage*max(Q-d,0) -lostsales*max(d-Q,0))*(1.-loyality) #loyality = phi (=supplierへの利益分配率))
        profit_seven  += (net_margin+ salvage*max(Q-d,0)- lostsales*max(d-Q,0) )*loyality
        lostsales_cost += lostsales*max(d-Q,0) #機会損出費用
        salvage_value += salvage*max(Q-d,0)    #売れ残り価値

    retail_profit.append( profit_retail)
    seven_profit.append( profit_seven)
    
#print(profit_retail, profit_seven, lostsales_cost, salvage_cost)

#最適な発注量を求める => プロット
# min_cost = np.max
retail_profit2, seven_profit2 = [], [] 
for Q in range(QLB,QUB):
    
    profit_retail, profit_seven, lostsales_cost, salvage_value = 0,0,0,0
    for d in list(demand):
        purchase_cost = purchase*min(Q,d) #売れた分だけ仕入れ値を払う(コンビニ会計)
        profit = price*min(Q,d)
        net_margin = profit-purchase_cost #粗利益(コンビニ会計だとnet_marginが大きくなる)
        profit_retail += net_margin*(1.-loyality) -purchase*max(Q-d,0)+salvage*max(Q-d,0) -lostsales*max(d-Q,0)*(1.-loyality) #売れ残りに対する原価を店舗利益から引く(コンビニ会計)
        profit_seven  += net_margin*loyality- lostsales*max(d-Q,0)*loyality
        lostsales_cost += lostsales*max(d-Q,0) #機会損出費用
        salvage_value += salvage*max(Q-d,0)    #売れ残り価値
    
    retail_profit2.append( profit_retail)
    seven_profit2.append( profit_seven)
    
#print(profit_retail, profit_seven, lostsales_cost, salvage_cost)
cost_df = pd.DataFrame({"発注量":list(range(QLB,QUB)),"小売利益":retail_profit, "本社利益":seven_profit,
                       "小売利益(コンビニ会計)":retail_profit2, "本社利益(コンビニ会計)":seven_profit2})
cost_df.head()
発注量 小売利益 本社利益 小売利益(コンビニ会計) 本社利益(コンビニ会計)
0 50 50000.0 50000.0 50000.0 50000.0
1 51 51000.0 51000.0 51000.0 51000.0
2 52 52000.0 52000.0 52000.0 52000.0
3 53 53000.0 53000.0 53000.0 53000.0
4 54 54000.0 54000.0 54000.0 54000.0
fig = px.scatter(cost_df, x="発注量",y=["小売利益", "本社利益","小売利益(コンビニ会計)", "本社利益(コンビニ会計)" ])
plotly.offline.plot(fig);

予測と在庫管理の融合

従来の需要予測の研究と在庫管理の研究は別々に行われてきた. 予測では,非定常な需要を仮定し,在庫管理では定常な分布を仮定する場合が多い. これらの2つの(おそらくサプライ・チェインに対して最も重要かつ最も多くの研究が行われてきた)モデルを構築することは,永年の研究者たちの夢であったが,いまだに実務的で納得するものは出ていない.

従来の研究の多くは,以下の2つに分類される.

  1. 綺麗な解析ができるような(実務的にはかなり特殊な)仮定の元での理論研究
  2. 実際の問題をなんとか解決するための(理論的な背景はほとんど考慮されていない)ヒューリスティクス

以下では,理論的にもある程度きちんとした枠組みで,かつ実際問題を解決可能な方法について考える.方針は以下の通り.

  1. 予測を行い誤差の分布を適当な分布で近似する.

  2. リード時間分の予測需要の合計と分布に基づく安全在庫の和が変動型の基在庫レベルになる.

  3. 需要が負にならないようにスライドして,基在庫レベル最適化を行い,安全在庫量の最適化を行う.

  4. 安全在庫と需要予測に基づく確定在庫を合わせることによって,動的な基在庫レベルを導く.

Integrating Forecasting and Inventory Management

Traditional research on demand forecasting and inventory management have been conducted separately. Forecasting often assumes a non-stationary demand, while inventory management assumes a stationary distribution. Building these two (probably the most important and most studied) models for the supply chain has been a dream of researchers for a long time, but nothing practical and convincing has been produced yet.

Most conventional research can be divided into two categories.

  • Theoretical research based on assumptions that allow for clean analysis (which are quite specific from a practical standpoint)
  • Heuristics to somehow solve real problems (with little or no consideration of theoretical background).

In the following, we will consider methods that are both theoretically sound and capable of solving practical problems. The policy is as follows.

  1. Make a forecast and approximate the distribution of the error with a suitable distribution.

  2. The sum of the total demand forecast for the lead time and the safety stock based on the distribution is the base stock level for the variable type.

  3. The base inventory level is optimized by sliding the demand so that it does not become negative, and the amount of safety stock is optimized.

  4. The dynamic base stock level is derived by combining the safety stock and the fixed stock based on the demand forecast.

サンプル需要データの読み込み

プロモーションデータを付加した需要データを読み込む.顧客と製品を選択肢,1日単位の需要系列を生成する. 2019年の年初から2020年の年末までのデータであり,2020年10月以降を検証用として用いる.

予測手法は自動機械学習を用いる.この部分は深層学習やベイズ推論に置き換えても良い.

Loading sample demand data

Load the demand data with promotion data added. Choose customers and products, and generate a daily demand series. The data covers the period from the beginning of 2019 to the end of 2020, and the data after October 2020 is used for validation.

The forecasting method is based on automatic machine learning. This part can be replaced by deep learning or Bayesian inference.

promo_df = pd.read_csv(folder+"promo.csv", index_col=0)
demand_df = pd.read_csv(folder+"demand_with_promo_all.csv")
c = "仙台市" 
p = "C"
print(c,p)
agg_period ="1d"
df, future = make_forecast_df(demand_df, customer=c, product=p,promo_df= promo_df, agg_period="1d", forecast_periods = 10)
horizon="2020/10/01"
best, result_df = automl(df, horizon, 5)
Model MAE MSE RMSE R2 RMSLE MAPE TT (Sec)
et Extra Trees Regressor 0.8184 1.4329 1.1970 0.9259 0.3454 0.3228 0.1400
catboost CatBoost Regressor 0.9641 1.6140 1.2704 0.9166 0.4705 0.3642 1.2500
rf Random Forest Regressor 0.9471 1.8677 1.3666 0.9035 0.3581 0.2946 0.1700
lightgbm Light Gradient Boosting Machine 1.0635 2.0255 1.4232 0.8953 0.4909 0.3828 0.1600
xgboost Extreme Gradient Boosting 1.0059 2.0651 1.4370 0.8933 0.4459 0.3132 0.3900
gbr Gradient Boosting Regressor 1.1372 2.7493 1.6581 0.8579 0.4964 0.4625 0.0800
dt Decision Tree Regressor 1.3407 5.5824 2.3627 0.7114 0.7269 0.5754 0.0100
ada AdaBoost Regressor 2.3201 7.0186 2.6493 0.6372 0.9424 0.5857 0.0700
ridge Ridge Regression 2.1316 7.4200 2.7240 0.6164 0.9256 0.9212 0.0000
br Bayesian Ridge 2.1351 7.4732 2.7337 0.6137 0.9270 0.9264 0.0100
lar Least Angle Regression 3.7772 18.6936 4.3236 0.0337 1.1358 1.2991 0.0100
huber Huber Regressor 3.0573 19.5931 4.4264 -0.0128 0.8909 0.6111 0.0200
en Elastic Net 4.0496 19.6190 4.4293 -0.0142 1.2366 1.1734 0.0000
par Passive Aggressive Regressor 3.8849 19.8872 4.4595 -0.0280 1.1862 1.0219 0.0000
lr Linear Regression 4.1256 20.4303 4.5200 -0.0561 1.2505 1.2217 0.0000
lasso Lasso Regression 4.1243 20.4572 4.5230 -0.0575 1.2509 1.2182 0.0000
llar Lasso Least Angle Regression 4.7760 26.0867 5.1075 -0.3485 1.3798 1.5266 0.0000
omp Orthogonal Matching Pursuit 4.1709 28.0720 5.2983 -0.4511 1.2779 1.0241 0.0000
knn K Neighbors Regressor 7.1319 62.3846 7.8984 -2.2248 1.7197 2.7013 0.0000
fig, error, result = predict_using_automl(df, future, best[0])
#plotly.offline.plot(fig);
Model MAE MSE RMSE R2 RMSLE MAPE
0 Extra Trees Regressor 0.8184 1.4329 1.1970 0.9259 0.3454 0.3228

検証用データに対する誤差分布の解析

検証用データ期間に対して1日単位の誤差を求め,最も適合する連続分布を求める.

リード時間内の誤差の和の分布を求め,同様に最も適合する連続分布を求める.

train_idx, valid_idx = prepare_index(df, horizon)
print(len(valid_idx))
90
error = result[:len(df)].Label - df.demand
error[valid_idx].hist(density=True);
error[valid_idx]
640   -0.88
641   -1.10
642   -0.18
643    0.47
644   -0.52
       ... 
725    0.02
726    0.01
727   -0.85
728    0.05
729    0.06
Length: 90, dtype: float64
fig, best_dist, best_fit_name, best_fit_params  = best_distribution(error[valid_idx])
#plotly.offline.plot(fig);
print(best_fit_name, best_fit_params)
dgamma (0.5146404593477012, 0.019999999999999997, 1.4358365014276395)
d = best_dist.rvs((5,10000))
pd.Series(d.sum(axis=0)).hist(density=True);
n = norm(loc=best_dist.mean()*5,scale=best_dist.std()*np.sqrt(5))
d2 = best_dist.rvs(10000)
pd.Series(d2).hist(density=True);
Lmax = 50
MaxDemand = [0.] 
for L in range(1,min(Lmax,len(data))): #リード時間
    df_error = pd.Series(error[valid_idx])
    data = df_error.rolling(window=L).sum()[L-1:].values #L日前から直前までの需要の合計
    fig, hist  = best_histogram(data)
    #plotly.offline.plot(fig2);
    MaxDemand.append( hist.ppf(0.95) )
MaxDemand2 = []
max_ = MaxDemand[0]
for d in MaxDemand:
    max_ = max(max_, d)
    if d < max_: 
        MaxDemand2.append(max_)
    else:
        MaxDemand2.append(d)
pd.Series(MaxDemand2).plot();
L = 5#リード時間
df_error = pd.Series(error[valid_idx])
data = df_error.rolling(window=L).sum()[L-1:].values #L日前から直前までの需要の合計
pd.Series(data).hist();
fig2, best_dist2, best_fit_name2, best_fit_params2  = best_distribution(data)
plotly.offline.plot(fig2);
print(best_fit_name2, best_fit_params2)
dgamma (0.7658916979282773, 0.10999999999999988, 1.766101465922829)

基在庫レベルの設定

誤差分布から定常な需要分布を生成する.

リード時間内の誤差分布から,初期基在庫レベルを以下の式で生成する.

品切れ費用 $b$,在庫費用から臨界率を計算する.

$$ \omega = b/(b+h) $$

リード時間内の需要分布に対して,品切れ率が臨界率に一致するように安全在庫量を求める.

また,需要が負にならないように,それ以下になる確率が1%の値を $0$ と設定することによって,需要を定数だけ大きくする. 毎日,この定数分だけの需要が発生すると仮定して,需要データを生成する.

この需要系列を利用して,定常状態の最適な基在庫レベルをシミュレーションに基づく最適化で行う.

n_samples = 10
n_periods = 1000
capacity = 10.
convergence = 1e-5
b = 100
h = 1 
LT = L
critical_ratio = b/(b+h)
S = best_dist2.ppf(critical_ratio) 
lb = best_dist.ppf(0.01)
print(S, lb )
demand = best_dist.rvs((n_samples,n_periods)) - lb #需要を分布が0以上になるようにシフトさせる.
S = S - lb*LT #基在庫レベルはリード時間内の定常需要だけ大きくする.
print(S)
6.106113612640433 -3.923975750210528
17.87804086327202
n_samples = 10
n_periods = 1000
capacity = 1000.
convergence = 1e-5
b = 100
h = 1 
LT = L
critical_ratio = b/(b+h)
S = best_dist2.ppf(critical_ratio) 
lb = best_dist.ppf(0.01)
print(S, lb )
demand = best_dist.rvs((n_samples,n_periods)) - lb #需要を分布が0以上になるようにシフトさせる.
S = S - lb*LT #基在庫レベルはリード時間内の定常需要だけ大きくする.
print(S)
print("t:   S      dS     Cost")
for iter_ in range(100):
    dC, cost, I = base_stock_simulation(n_samples, n_periods, demand, capacity, LT, b, h, S)
    S = S - .1*dC
    print(f"{iter_}: {S:.2f} {dC:.3f} {cost:.2f}")
    if dC**2<=convergence:
        break
6.106113612640433 -3.923975750210528
17.87804086327202
t:   S      dS     Cost
0: 17.87 0.091 7.54
1: 17.86 0.081 7.54
2: 17.85 0.071 7.54
3: 17.85 0.071 7.54
4: 17.84 0.071 7.54
5: 17.83 0.061 7.54
6: 17.83 0.061 7.54
7: 17.82 0.061 7.54
8: 17.82 0.061 7.54
9: 17.81 0.051 7.54
10: 17.81 0.051 7.54
11: 17.80 0.051 7.54
12: 17.80 0.030 7.54
13: 17.79 0.030 7.54
14: 17.79 0.010 7.54
15: 17.79 0.010 7.54
16: 17.79 0.010 7.54
17: 17.79 0.010 7.54
18: 17.79 0.010 7.54
19: 17.79 0.010 7.54
20: 17.79 0.010 7.54
21: 17.79 0.010 7.54
22: 17.78 0.010 7.54
23: 17.78 0.010 7.54
24: 17.78 0.010 7.53
25: 17.78 0.010 7.53
26: 17.78 0.010 7.53
27: 17.78 0.000 7.53
pd.DataFrame(I[0]).plot(); #在庫の推移の可視化

動的基在庫レベルの計算

定数分だけシフトした需要分を減じることによって,予測の誤差に対応するための安全在庫料量を計算する.

予測値は確定的な値として計算されるので,リード時間分の確定値の和だけ在庫を保持する.これに安全在庫分を加えたものが動的な基在庫レベルになる.

日々の運用は,在庫ポジションをこの値になるように発注(生産)を行う.

safety = S + lb*LT
print(safety)
6.008873612640432
future = pd.Series(result[len(df):].Label)
data = future.rolling(window=L).sum()[L-1:].values #L日前から直前までの需要の合計
data
array([13.55, 13.47, 10.12,  6.89, 14.99, 21.15, 20.65, 20.65])
data + safety
array([19.55887361, 19.47887361, 16.12887361, 12.89887361, 20.99887361,
       27.15887361, 26.65887361, 26.65887361])
future = result.Label[valid_idx] 
data = future.rolling(window=L).sum()[L-1:].values #L日前から直前までの需要の合計
DS = data + safety #dynamic base stock level 
dem = df.demand[valid_idx]
I = np.zeros( len(dem)+1 )
I[0] = DS[0] #エシェロン在庫ポジション
for t, d in enumerate(dem):
    I[t+1] = I[t] - d
    order = max(DS[t+1] -I[t+1],0) 
    I[t+1] = I[t+1] + order
    #print(t,d,I[t+1])
    if t>=len(DS)-2:
        break
pd.Series(I[:-3]).plot();
dem.plot();

正規分布に近い需要関数の例

上の例ではzip分布に近い需要を仮定していた.以下では,正規分布に近い場合を考える.

demand_df = pd.read_csv(folder+"demand_normal.csv") 
c = "仙台市" 
p = "A"
print(c,p)
agg_period ="1d"
df, future = make_forecast_df(demand_df, customer=c, product=p,promo_df= None, agg_period="1d", forecast_periods = 0)
df.demand.max()
horizon="2019/10/01"
best, result_df = automl(df, horizon, 5)
Model MAE MSE RMSE R2 RMSLE MAPE TT (Sec)
lasso Lasso Regression 100.2628 15136.4229 123.0302 0.7174 0.0801 0.0656 0.0100
ridge Ridge Regression 115.1678 21126.2422 145.3487 0.6056 0.0939 0.0716 0.0000
llar Lasso Least Angle Regression 124.3677 22642.7084 150.4749 0.5773 0.1000 0.0847 0.0000
lightgbm Light Gradient Boosting Machine 135.1054 26361.0052 162.3607 0.5079 0.1054 0.0912 0.0400
omp Orthogonal Matching Pursuit 130.6787 27112.9591 164.6601 0.4938 0.1072 0.0880 0.0000
gbr Gradient Boosting Regressor 140.5485 28375.8903 168.4514 0.4703 0.1097 0.0951 0.0400
catboost CatBoost Regressor 151.5904 32636.8823 180.6568 0.3907 0.1175 0.1030 1.2700
en Elastic Net 171.0394 42394.4023 205.8990 0.2086 0.1362 0.1163 0.0000
et Extra Trees Regressor 177.6587 43153.4575 207.7341 0.1944 0.1327 0.1196 0.1400
ada AdaBoost Regressor 185.1509 47749.3467 218.5162 0.1086 0.1402 0.1265 0.0500
rf Random Forest Regressor 191.4697 51454.3014 226.8354 0.0394 0.1429 0.1296 0.1700
xgboost Extreme Gradient Boosting 191.4150 53848.4531 232.0527 -0.0053 0.1472 0.1308 0.3300
par Passive Aggressive Regressor 191.9421 54763.1891 234.0154 -0.0224 0.1515 0.1276 0.0000
br Bayesian Ridge 195.9908 57561.6403 239.9201 -0.0746 0.1564 0.1327 0.0000
huber Huber Regressor 196.6167 58014.9136 240.8629 -0.0831 0.1570 0.1332 0.0100
lr Linear Regression 197.9349 58133.7969 241.1095 -0.0853 0.1571 0.1340 0.0000
lar Least Angle Regression 212.4354 61619.4643 248.2327 -0.1503 0.1696 0.1315 0.0100
dt Decision Tree Regressor 223.6154 71599.5055 267.5808 -0.3367 0.1597 0.1475 0.0000
knn K Neighbors Regressor 235.7868 79601.6484 282.1376 -0.4861 0.1833 0.1647 0.0000
fig, error, result = predict_using_automl(df, future, best[0])
plotly.offline.plot(fig);
Model MAE MSE RMSE R2 RMSLE MAPE
0 Lasso Regression 100.2628 15136.4229 123.0302 0.7174 0.0801 0.0656
train_idx, valid_idx = prepare_index(df, horizon)
print(len(valid_idx))
error = result.Label - df.demand
error[valid_idx].hist(density=True);
91
fig, best_dist, best_fit_name, best_fit_params  = best_distribution(error[valid_idx])
plotly.offline.plot(fig);
print(best_fit_name, best_fit_params)
mielke (2.6729912087197274, 11.291010366009026, -373.2172202339409, 503.0204118518145)
L = 3 #リード時間
df_error = pd.Series(error[valid_idx])
data = df_error.rolling(window=L).sum()[L-1:].values #L日前から直前までの需要の合計
fig2, best_dist2, best_fit_name2, best_fit_params2  = best_distribution(data)
plotly.offline.plot(fig2);
print(best_fit_name2, best_fit_params2)
gausshyper (0.5815996180621221, 3.799377992229532, -5.653814263450716, 2.624922751643501, -605.2475585937501, 1374.3047245376556)

基在庫レベルの設定

n_samples = 10
n_periods = 1000
capacity = 1000.
convergence = 1e-5
b = 100
h = 1 
LT = L
critical_ratio = b/(b+h)
S = best_dist2.ppf(critical_ratio) 
lb = best_dist.ppf(0.01)
print(S, lb )
demand = best_dist.rvs((n_samples,n_periods)) - lb #需要を分布が0以上になるようにシフトさせる.
S = S - lb*LT #基在庫レベルはリード時間内の定常需要だけ大きくする.
print(S)
print("t:   S      dS     Cost")
for iter_ in range(100):
    dC, cost, I = base_stock_simulation(n_samples, n_periods, demand, capacity, LT, b, h, S)
    S = S - 10.*dC
    print(f"{iter_}: {S:.2f} {dC:.3f} {cost:.2f}")
    if dC**2<=convergence:
        break
585.0727636548719 -283.39988265249485
1435.2724116123563
t:   S      dS     Cost
0: 1428.10 0.717 580.84
1: 1421.03 0.707 575.75
2: 1413.96 0.707 570.74
3: 1407.49 0.646 566.01
4: 1401.53 0.596 562.02
5: 1395.67 0.586 558.49
6: 1390.22 0.545 555.13
7: 1385.27 0.495 552.26
8: 1381.03 0.424 549.95
9: 1377.49 0.354 548.29
10: 1374.26 0.323 547.06
11: 1371.13 0.313 546.03
12: 1368.40 0.273 545.12
13: 1365.77 0.263 544.37
14: 1363.24 0.253 543.70
15: 1360.92 0.232 543.10
16: 1358.90 0.202 542.59
17: 1357.18 0.172 542.21
18: 1355.56 0.162 541.92
19: 1354.05 0.152 541.67
20: 1352.73 0.131 541.46
21: 1351.42 0.131 541.29
22: 1350.41 0.101 541.13
23: 1349.70 0.071 541.05
24: 1348.99 0.071 541.00
25: 1348.29 0.071 540.95
26: 1347.88 0.041 540.91
27: 1347.48 0.041 540.89
28: 1347.17 0.030 540.88
29: 1346.87 0.030 540.87
30: 1346.66 0.020 540.86
31: 1346.46 0.020 540.85
32: 1346.26 0.020 540.85
33: 1346.16 0.010 540.85
34: 1346.05 0.010 540.85
35: 1345.95 0.010 540.84
36: 1345.85 0.010 540.84
37: 1345.75 0.010 540.84
38: 1345.65 0.010 540.84
39: 1345.54 0.010 540.84
40: 1345.44 0.010 540.84
41: 1345.34 0.010 540.84
42: 1345.24 0.010 540.84
43: 1345.14 0.010 540.84
44: 1345.14 0.000 540.83
pd.DataFrame(I[0]).plot(); #在庫の推移の可視化

動的基在庫レベルの設定と検証データでシミュレーション

safety = S + lb*LT
print(safety)
#検証データでシミュレーション
future = result.Label[valid_idx] 
data = future.rolling(window=L).sum()[L-1:].values #L日前から直前までの需要の合計
DS = data + safety #dynamic base stock level 
dem = df.demand[valid_idx]
I = np.zeros( len(dem)+1 )
I[0] = DS[0] #エシェロン在庫ポジション
for t, d in enumerate(dem):
    I[t+1] = I[t] - d
    order = max(DS[t+1] -I[t+1],0) 
    I[t+1] = I[t+1] + order
    #print(t,d,I[t+1])
    if t>=len(DS)-2:
        break
pd.Series(I[:-3]).plot();
494.93576365487047

ネットワーク型の例

n = 7
G = SCMGraph()
for i in range(n):
    G.add_node(i)
G.add_edges_from([(0, 2), (1, 2), (2,4), (3,4), (4,5), (4,6)])

z = np.full(len(G),1.65)
h = np.array([1,1,3,1,5,6,6])
mu = np.array([200,200,200,200,200,100,100])
sigma = np.array([14.1,14.1,14.1,14.1,14.1,10,10])
LTUB = np.array([0,0,0,0,0,3,1], int)

ProcTime = np.array([6,2,3,3,3,3,3], int) # 動的最適化の例題と合わせるため、生産時間から保証リード時間上限を減じてある

best_cost, best_sol, best_NRT, best_MaxLI, best_MinLT  = tabu_search_for_SSA(G, ProcTime,  LTUB, z, mu, sigma, h, max_iter = 10, TLLB =1, TLUB =3, seed = 1)
print("最良値", best_cost)
print("最良解", best_sol)
print("正味補充時間", best_NRT)
print("最大補充リード時間", best_MaxLI)
print("最小保証リード時間", best_MinLT)

pos = G.layout()
stage_df, bom_df = make_df_for_SSA(G, pos, ProcTime, LTUB, z, mu, sigma, h, best_NRT, best_MaxLI, best_MinLT)
stage_df.to_csv(folder_bom + "stage_ex1.csv")
bom_df.to_csv(folder_bom + "bom_ex1.csv")

fig, G, pos = draw_graph_for_SSA_from_df(stage_df, bom_df)
#fig.show()
nx.draw(G, pos=pos)
最良値 514.8330943986502
最良解 [1 1 0 0 1 0 1]
正味補充時間 [6. 2. 0. 0. 6. 0. 2.]
最大補充リード時間 [6. 2. 3. 3. 6. 3. 3.]
最小保証リード時間 [0. 0. 3. 3. 0. 3. 1.]
stage_df = pd.read_csv(folder_bom + "stage_ex1.csv")
bom_df = pd.read_csv(folder_bom + "bom_ex1.csv")
best_cost, stage_df, bom_df, fig = solve_SSA(stage_df, bom_df)
stage_df
Unnamed: 0 name net_replenishment_time max_guaranteed_LT processing_time replenishment_LT guaranteed_LT z average_demand sigma h b capacity x y
0 0 0 6.0 0 6 6.0 0.0 1.65 200 14.1 1 8.8 2000.0 0 0
1 1 1 2.0 0 2 2.0 0.0 1.65 200 14.1 1 8.8 2000.0 0 2
2 2 2 0.0 0 3 3.0 3.0 1.65 200 14.1 3 26.3 2000.0 1 0
3 3 3 0.0 0 3 3.0 3.0 1.65 200 14.1 1 8.8 2000.0 0 1
4 4 4 6.0 0 3 6.0 0.0 1.65 200 14.1 5 43.9 2000.0 2 0
5 5 5 0.0 3 3 3.0 3.0 1.65 100 10.0 6 52.7 1000.0 3 0
6 6 6 2.0 1 3 3.0 1.0 1.65 100 10.0 6 52.7 1000.0 3 1
cost, stage_df, I, cost_list, phi_list = periodic_inv_opt_fit_one_cycle(stage_df, bom_df, max_iter = 1000, n_samples = 10, 
                                                                        n_periods = 100, seed = 1, lr_find=False, max_lr =6.0, moms=(0.85,0.95))
ELT= [21. 17. 13. 13. 11.  1.  3.]
S= [4306.61362354 3495.92405238 2683.88315042 2683.88315042 2277.16127575
  116.5         328.57883832]
t: Cost    |dC|      S 
0: 16082.26, 2384121.79078 [4306.61362354 3495.92405238 2683.88315042 2683.88315042 2277.16127575
  116.5         328.57883832]
Best: 16054.62 [4294.07257219 3509.66262327 2667.975591   2687.85892252 2286.37514486
  124.01255267  341.92807231]